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Nonequilibrium Plate Height for Field-Flow Fractionation in 
Ideal Parallel Plate Columns 

J. CALVIN GIDDINGS, YOUNG HEE YOON, 
KARIN D. CALDWELL, MARCUS N. MYERS, and 
MARGO E. HOVINGH 
DEPARTMENT OF CHEMISTRY 
UNIVERSITY OF UTAH 
SALT LAKE CITY, UTAH 841 12 

Abstract 
The need for a more realistic theoretical description of peak spreading in field- 
flow fractionation (FFF) is shown. The lengthy derivation necessary to obtain 
the plate height of an ideal parallel plate column is then described in abbreviated 
form. Several limiting expressions are derived. 

INTRODUCTION 

The characterization of the elution profiles of solute peaks from field- 
fiow fractionation (FFF) columns is necessary in order to optimize the 
parameters of separation. The most important peak characteristics insofar 
as separations are concerned are retention time and peak width, the same 
as in chromatography and most other fractionation techniques. Retention 
has been described both experimentally and theoretically for a number of 
subclasses of FFF (1-8). Peak widths are more difficult to treat theoreti- 
cally, and their measurement is less reliable, again reflecting the general 
properties of chromatographic systems. However, a general theory of 
nonequilibrium has been developed for FFF, which can be applied to peak 
spreading in various column geometries (9). Unfortunately, the application 
of the general theory to specific geometries is rather complex, involving 
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440 GlDDlNGS ET AL. 

the integration and manipulation of numerous terms. For this reason only 
one specific application has been made: to linear velocity gradient flow 
across a flat plate, with no upper confining wall (9). At best this simple 
model provides the proper limiting expression for strong retention in 
parabolic flow between parallel plates. However, it does not describe the 
full practical retention range even for this simple geometry. It is, therefore, 
imperative to expand the theory so that it can be more realistically applied 
to practical column geometries. 

In this paper we develop the theory for the ideal parallel plate column. 
This consists of two infinite parallel plates with parabolic flow between. 
All significant FFF columns developed to date consist of a parallel plate 
channel with a breadth-to-width ratio of 40-to-1 or greater. Except for a 
small perturbation at the edge, these channels should exhibit a behavior 
approaching that of the ideal parallel plate column. 

THEORY 

Peak spreading in FFF is best described in terms of plate height. The 
definition of plate height used here in the usual way for zonal migration 
systems, including chromatography (lo), is 

H = f J = p  (1) 

where c2 is the variance of the eluted peak in units of distance and L is 
the column length. Several factors contribute to H in FFF. These can be 
grouped into three categories : longitudinal diffusion, extraneous dis- 
turbances, and nonequilibrium (2). The first of these is small because of 
sluggish diffusion in systems of macromolecules. The second can be made 
small by advances in instrumentation. The third, nonequilibrium, is the 
least reducible and therefore the most important influence in FFF peak 
spreading. 

The plate height contributed by nonequi1ibi:ium processes can be written 
in two equivalent forms (9, 2):  

H = 11/12.Y/D 

H = x W y v ) p  

where I is the characteristic thickness of the solute layer, Y is the zone 
velocity, ( u )  is the average solvent velocity, D is the diffusion coefficient, 
and 1I/ and x are coefficients whose magnitude we seek in this paper. The 
first of these expressions reduces to a simpler form and is generally more 
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NONEQUILIBRIUM PLATE HEIGHT FOR FFF 449 

useful under conditions of high retention, and the second is advantageous 
when retention is slight. The second is also favored by the fact that all 
parameters but x are directly observable. The coefficients are related by 
the equation 

x = W 2 R )  (4) 
a relationship that can be derived from Eqs. (2) and (3) by using retention 
ratio R for Y / ( v )  and the basic retention parameter 1 for Z/w. 

In the earlier paper devoted to evolving a general nonequilibrium theory 
for FFF (9), it was shown that $ is the following ratio of cross-sectional 
averages 

$ = -2(c*@(p - I))/<c*) (5 )  

where c* is the quasiequilibrium concentration of solute at  any given 
point; p is the reduced solvent velocity, v / Y ;  and @ is a nonequilibrium 
parameter dependent on cross-sectional position and equal to q!~ - gl. 
Here g1 is a constant and 4 is to be obtained as a solution to the differential 
equation 

Quantity [ is a dimensionless coordinate equal to the altitude above the 
lower plate x divided by characteristic thickness 1. (We redefine 1 in this 
paper to equal the absolute value of 1 in the general paper.) Hence the first 
negative sign in Eq. (6) replaces a positive sign in the original equation. 
This equation is to be solved subject to the boundary conditions (c*$) = 0 
and (@/a[) = 0 at the two confining walls. 

As an aid to solving Eq. (6), we note the mathematical relationship 

This along with Eq. (6)  permits the reformulation of Eq. (6) into the form 

One integration and the use of the boundary condition (dcj/d[) = 0 at 
5 = 0 leads to the equation 
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450 GlDDlNGS ET AL. 

A second integration yields 

where constant g1 can be identified as the 4) value at = 0. Quantity 
4 - g1 can be identified with the nonequilibrium parameter @ which, 
upon substitution into Eq. (9, yields 

where C* in the numerator has been replaced by the exponential distribu- 
tion (4, 5, 9). 

(12) c* = co*e-X/l = c,*,c-C 

Equation (11) can be integrated by parts, Ju du = MU - Ju du, in which 
we employ 

The uu portion of the integral can be written as 

The integral outside the brackets spans the range from the lower wall, 
[ = 0, to the upper wall, [ = l /A .  At both walls the boundary condition 
d+/d[ = 0 applies (see discussion following IEq. 6). Therefore, by virtue 
of Eq. (9), the integral under discussion vanishes. Hence the M U  portion 
of the parts integration is zero. This leaves, when we combine the multi- 
plicative constant of Eq. (1 1) and the integral - J u  du, the following ex- 
pression for $ 

If now we replace ( c * )  by Ico*(l - e-l'A) (derivable using Eq. 12), p 
by u l Y ,  Y by R(u), and u by the parabolic expression 

v = 6 ( u ) ( z  - 5) = 6(v>(A[ - 

we get the following working equation for $, valid in the parabolic flow 
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NONEQUlLlBRlUM PLATE HEIGHT FOR FFF 451 

approximation 

The evaluation of the integrals in this equation are more involved and 
detailed than the form of the expression might suggest. We will discuss 
only a few key juncture points below. 

The straightforward integration of the integral in brackets yields 

[ ] = 6{e-r[1252 + (21' - 1) 5 - B] + B }  

B = 1 - 21' - R/6 

(19) 

(20) 
where 

We eventually wish to eliminate R in favor of 1, and can do so by starting 
with the known R expression (2) 

R = 61[~0th(1/21) - 211 (21) 
and rearranging it to 

This substituted into Eq. (20) simplifies to 

21 B = -  1 - e'lA 

If now Eq. (19) is substituted back into Eq. (18), a considerable number 
of integrations and rearrangements of the latter produce 

- 101(e-1/' + 111 (24) 

Quantities B and R can be eliminated with the help of Eqs. (22) and (23), 
finally yielding 1c/ as a function of A only: 
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452 GlDDlNGS ET AL. 

The corresponding expression for x can be obtained from this with the aid 
of Eqs. (4) and (22) 

where { } is identical to the expression in braces in Eq. (25). The values of 
t,b and x from these two expressions are plotted in Fig. 1. An R vs 1 plot 
(Eq. 21) appears there also. 

Equations (25) and (26) involved so many algebraic steps in their 
derivation that, despite normal precautions, errors are not inconceivable. 
However, certain checks exist to help obviate the problem. First of all, 
the magnitude and shape of the curves generated by these equations are 
reasonable and are in rough accord with experimental work. Second, 
limiting expressions can be obtained from these two equations which can 
be compared with other, more limited studies. For instance, as I -, co, 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

A 
1.6 

FIG. 1. Plots of I, x, and R as a function of 1. The plotted values are obtained 
from Eqs. (25), (26), and (22), respectively. 
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NONEQUlLlBRlUM PLATE HEIGHT FOR FFF 453 

we reach a situation in which, effectively, no field exists and thus no 
concentration gradients are found along axis x. In this limit, Eqs. (25) and 
(26) can be shown to produce 

l imx = 1/105 

lim$ = 0 
a+ 03 

2.4 m 

These results are easily confirmed by a simple nonfield application of 
nonequilibrium theory (details not shown here) as developed for chro- 
matography (ZO). 

In the limit A + 0, Eqs. (25) and (26) produce 

l imx = 24A3 

lim I) = 4 
a+ 0 

a-+o 

The latter result is identical to that obtained in the general paper for a 
linear flow profile unbounded by an upper wall. This situation effectively 
occurs as I and A approach zero. The identity of the results confirms our 
general equations in this limit. 

APPROXIMATIONS AND DISCUSSION 

The complexity of Eqs. (25) and (26), and the need for numerical and 
graphical calculations, make it appropriate to seek simplified, approximate 
expressions for these coefficients. To begin with, it is useful to look at 
limiting expressions in which more terms are retained than those shown in 
Eqs. (29) and (30). We focus here on the limit A + 0 because this limit is 
of the greatest practical importance. The limit A + co, of lesser impor- 
tance, is described adequately by Eq. (27). 

For A << 1, Eq. (26) can be shown to reduce to 

xn = 24A3 ( 1  - :"; ;-,,A2) 
where the subscript a is used to indicate that this is merely an approxima- 
tion for any finite value of A. Expressed purely as a power series valid to 
the third term, 

xa = 24A3(1 - 81 + 12A2) (32) 
The first two terms, 1 - 81, can be approximated initially by e-8a, yielding 
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the approximation 

x5 = 2413e-8a (33) 
Figure 2 shows the error incurred by the above approximations and 

Similar approximations can be devised for $. Using Eqs. (4) and (31), 
others. 

we get 

4(1 - 101 + 281') I << 1 rl/' = (1 - 242 (34) 

where R has been replaced by its limiting form 

R = 6A(1 - 21) 1 << 1 (35) 

t,h5 = 4(1 - 61) 1 << 1 (36) 

A series expansion of $ yields 

This is valid up to the 1' term in that the coefficient of that term is zero. 
One can also use various exponential approximations for $, similar to 
those employed for 2. The results are illustrated in Fig. 3. The simple 
approximation designated by $ = 4(1 - 6A), Eq. (36), is valid within 10% 
to 1 = 0.1, equivalent to R = 0.48 (see Fig. 1). This is an excellent and 
simple approximation, valid for most practical FFF work. Reasonable 
consistency over a broader range of 1 values is provided by various ex- 
ponential approximations, as shown in the figure. 

It is necessary to emphasize here that the basic variable of FFF is 
retention. Approached from the theoretical side, retention is described 
most simply in terms of 1, and approached experimentally, retention is 
best described in terms of retention ratio R. The connection between 
theoretical parameter 1 and experimental parameter R is provided by 
Eq. (21) or Eq. (22). The connection between the plate height parameter x 
and $ and retention parameter 1 has now been adequately covered, and we 
turn our attention to variations with R. 

Unfortunately, the complexity of the $ and x equations is such that, 
combined with the modest complexity of Eq. (22), a closed expression for 
the dependence of $ and x on R cannot be readily obtained. Yet the 
variation of $ and x with R is the most important relationship for the 
experimentalist studying peak broadening factors. In order to facilitate 
such studies, we have plotted in Fig. 4 the dependence of x and $ on R. 
These curves were obtained by combining the R vs 1 curve of Fig. 1 with 
the $ and x expressions of Eqs. (25) and (26). 
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

R 
FIG. 4. Plots of y and x as a function of retention ratio R.  

Useful approximations can be devtloped to deal with these complicated 
dependencies. The simplest stem from utilizing the lead term of Eq. (35), 
R = 61, to convert a 1 dependency to an R dependency. When this is 
combined with the two lead terms of Eq. (32), the following approximation 
is obtained: 

R3 
9 za = -(I - 4R/3) (37) 

When combined with Eq. (36), there results the approximation 

$a = 4(1 - R) (38) 

These two approximations are shown in Fig. 5. Equation (38) works 
moderately well over the entire retention range while Eq. (37) does not. 
However, as noted before, the most significant region for practical FFF 
is near R = 0, and both expressions serve a useful function in this vicinity. 
When a greater retention range requires description, it is possible to 
develop series approximations for x and $. The following series utilizes 
terms up to the seventh power in R: 

A 

xa = R3 aiRi 
i = O  

(39) 
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0.0 0.1 0.2 0.3 0.4  0.5 0.6 0.7 0.8 0.9 1.0 

R 

FIG. 5. Approximations to x and rfl as provided by Eqs. (37) and (38). 

7 
I),, = C biRi 

i = O  
(40) 

These equations were fitted, except for restraints on the lead terms as 
dictated by terms in Eqs. (37) and (38), to the computer-derived values 
utilizing a least squares procedure described by University of Utah 
Computer Center Program Library No. 0032. The coefficients derived by 
this procedure are a, = 1/9, a, = -0.03295, a2 = -0.05328, a3 = 
-0,1090, a4 = 0.09406; bo = 4.0, bl = -4.0, b2 = 1.642, b3 = 3.585, 
b, = - 18.479, b, = 35.195, 6,  = -24.484, and b7 = 5.8212. 

The errors produced by these approximations are shown in Fig. 6. 
For the most part, these approximations are valid to within 1 %. 

The above approximations, combined with the theoretical equations, 
provide a range of options which should make it convenient to predict 
the behavior of FFF columns under the most diverse circumstances. In 
this way, this work may serve a very practical purpose as well as filling 
a major theoretical gap. 
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