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Nonequilibrium Plate Height for Field-Flow Fractionation in
Ideal Parallel Plate Columns

J. CALVIN GIDDINGS, YOUNG HEE YOON,
KARIN D. CALDWELL, MARCUS N. MYERS, and
MARGO E. HOVINGH

DEPARTMENT OF CHEMISTRY
UNIVERSITY OF UTAH
SALT LAKE CITY, UTAH 84112

Abstract

The need for a more realistic theoretical description of peak spreading in field-
flow fractionation (FFF) is shown. The lengthy derivation necessary to obtain
the plate height of an ideal parallel plate column is then described in abbreviated
form. Several limiting expressions are derived.

INTRODUCTION

The characterization of the elution profiles of solute peaks from field-
fiow fractionation (FFF) columns is necessary in order to optimize the
parameters of separation. The most important peak characteristics insofar
as separations are concerned are retention time and peak width, the same
as in chromatography and most other fractionation techniques. Retention
has been described both experimentally and theoretically for a number of
subclasses of FFF (/-8). Peak widths are more difficult to treat theoreti-
cally, and their measurement is less reliable, again reflecting the general
properties of chromatographic systems. However, a general theory of
nonequilibrium has been developed for FFF, which can be applied to peak
spreading in various column geometries (9). Unfortunately, the application
of the general theory to specific geometries is rather complex, involving
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448 GIDDINGS ET AL.

the integration and manipulation of numerous terms. For this reason only
one specific application has been made: to linear velocity gradient flow
across a flat plate, with no upper confining wall (9). At best this simple
model provides the proper limiting expression for strong retention in
parabolic flow between parallel plates. However, it does not describe the
full practical retention range even for this simple geometry. It is, therefore,
imperative to expand the theory so that it can be more realistically applied
to practical column geometries.

In this paper we develop the theory for the ideal parallel plate column.
This consists of two infinite parallel plates with parabolic flow between.
All significant FFF columns developed to date consist of a parallel plate
channel with a breadth-to-width ratio of 40-to-1 or greater. Except for a
small perturbation at the edge, these channels should exhibit a behavior
approaching that of the ideal parallel plate column.

THEORY

Peak spreading in FFF is best described in terms of plate height. The
definition of plate height used here in the usual way for zonal migration
systems, including chromatography (10), is

H = ¢*/L )

where o7 is the variance of the eluted peak in units of distance and L is
the column length. Several factors contribute to H in FFF. These can be
grouped into three categories: longitudinal diffusion, extraneous dis-
turbances, and nonequilibrium (2). The first of these is small because of
sluggish diffusion in systems of macromolecules. The second can be made
small by advances in instrumentation. The third, nonequilibrium, is the
least reducible and therefore the most important influence in FFF peak
spreading.

The plate height contributed by nonequilibrium processes can be written
in two equivalent forms (9, 2):

H = yI*¥|D 2
H = yw*(u)[D €)

where [/ is the characteristic thickness of the solute layer, ¥ is the zone
velocity, {v) is the average solvent velocity, D is the diffusion coefficient,
and ¢ and y are coefficients whose magnitude we seek in this paper. The
first of these expressions reduces to a simpler form and is generally more
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useful under conditions of high retention, and the second is advantageous
when retention is slight. The second is also favored by the fact that all
parameters but y are directly observable. The coefficients are related by
the equation

X =Y(A*R) @

a relationship that can be derived from Eqgs. (2) and (3) by using retention
ratio R for ¥"/{v) and the basic retention parameter A for //w.

In the earlier paper devoted to evolving a general nonequilibrium theory
for FFF (9), it was shown that y is the following ratio of cross-sectional
averages

Y= —2c*0(u — 1)>/{c*) ®
where c* is the quasiequilibrium concentration of solute at any given
point; y 1s the reduced solvent velocity, v/¥"; and ® is a nonequilibrium
parameter dependent on cross-sectional position and equal to ¢ — g,.
Here g, is a constant and ¢ is to be obtained as a solution to the differential
equation

d? d
%?—d—‘é’w(o—l ®)

Quantity { is a dimensionless coordinate equal to the altitude above the
lower plate x divided by characteristic thickness I. (We redefine / in this
paper to equal the absolute value of / in the general paper.) Hence the first
negative sign in Eq. (6) replaces a positive sign in the original equation.
This equation is to be solved subject to the boundary conditions {c¢*¢> = 0
and (0¢/d¢) = 0 at the two confining walls.

As an aid to solving Eq. (6), we note the mathematical relationship

d{ _ d¢ (d*¢ do
Al I e o TS B s 4
dc(e dc> = ¢ (dcz aC @
This along with Eq. (6) permits the reformulation of Eq. (6) into the form
d d
He ) =1 ®)

One integration and the use of the boundary condition (d¢/d{) = 0 at
{ = 0 leads to the equation

d 4
Z(é—) = é jo e fu—Dd )
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A second integration yields
(A
b=a= [ éf ew-naa (10)

where constant g, can be identified as the ¢ value at { = 0. Quantity
¢ — g, can be identified with the nonequilibrium parameter ® which,
upon substitution into Eq. (5), yields

2co*A (L4
{e*> j
where c* in the numerator has been replaced by the exponential distribu-
tion (4, 5, 9).

P ey - 1) f & r - Ddrdld (D)
0 0

0

c* = cote™ M = cp*et (12)

Equation (11) can be integrated by parts, fudv = uv — [v du, in which
we employ

4 3
u = J e‘j e Yu — 1)d d; (13
o Jo
dv=e u—1Dd (14
The uv portion of the integral can be written as
1/2 9 1/4
[[ef etw-vaa]["ecw-na 1s)
0 o ]

The integral outside the brackets spans the range from the lower wall,
{ = 0, to the upper wall, { = 1/A. At both walls the boundary condition
dp/d = 0 applies (see discussion following Eq. 6). Therefore, by virtue
of Eq. (9), the integral under discussion vanishes. Hence the uv portion
of the parts integration is zero. This leaves, when we combine the multi-
plicative constant of Eq. (11} and the integral — j' v du, the following ex-
pression for i

@, e f, - na]
= — e - Dd} d 16
Y S L€ (p—-Ddlj d (16)
If now we replace {c*) by Acy*(1 — e~'/*) (derivable using Eq. 12), u
by v/¥", ¥~ by R{v), and v by the parabolic expression

2

b= 6<v>(f—v _ jj—) — 6¢o>UL — 2207 a7

we get the following working equation for ¢, valid in the parabolic flow
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approximation
2 1/4 . 4 - 202 2
lﬁ = ’R—Z‘(-l_—e‘:fmjo e‘:jvoe 4(6/1C — 6A%* ~ R) d{] dC (18)

The evaluation of the integrals in this equation are more involved and
detailed than the form of the expression might suggest. We will discuss
only a few key juncture points below.
The straightforward integration of the integral in brackets yields
[1=6{e[A%*+ (222 — 2){ — Bl + B} (19)
where
B=1-— 2}~ R/6 (20)
We eventually wish to eliminate R in favor of 1, and can do so by starting
with the known R expression (2)
R = 6A[coth(1/24) — 24] 21

and rearranging it to

1 —2et’* 41 + 24
Re6 A[( )‘f/; +1+ )] 22)
et —1
This substituted into Eq. (20) simplifies to
22
B=1—om @)

If now Eq. (19) is substituted back into Eq. (18), a considerable number
of integrations and rearrangements of the latter produce

14423 B 1 -
— 10A(e™Y* + 1)} (29)

Quantities B and R can be eliminated with the help of Egs. (22) and (23),
finally yielding s as a function of A only:

41 — e 'H ) 1
— I
l// - [(1 + e—l//l) - 22(1 — e‘-l/}.)]z{(zgl + 1)(1 e )
— 10A(e™* + 1) __1__2+ 4
322}

1/4 1/ 1
e /e"m)[‘“(‘ s /e*“)> B 6}} @)
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The corresponding expression for y can be obtained from this with the aid
of Egs. (4) and (22)

_ 2473{}
X =T (1 — e 7

(26)

where { } is identical to the expression in braces in Eq. (25). The values of
¥ and x from these two expressions are plotted in Fig. 1. An R vs A plot
(Eq. 21) appears there also.

Equations (25) and (26) involved so many algebraic steps in their
derivation that, despite normal precautions, errors are not inconceivable.
However, certain checks exist to help obviate the problem. First of all,
the magnitude and shape of the curves generated by these equations are
reasonable and are in rough accord with experimental work. Second,
limiting expressions can be obtained from these two equations which can
be compared with other, more limited studies. For instance, as A — oo,

0.0

0.2 0.4 0.8 0.8 1.0 1.2 1.4

A

F16. 1. Plots of y, x, and R as a function of A. The plotted values are obtained
from Egs. (25), (26), and (22), respectively.

1.6
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we reach a situation in which, effectively, no field exists and thus no
concentration gradients are found along axis x. In this limit, Eqgs. (25) and
(26) can be shown to produce

lim y = 1/105 (27
A=
lim y = (28)
Ao

These results are easily confirmed by a simple nonfield application of
nonequilibrium theory (details not shown here) as developed for chro-
matography (70).

In the limit 4 - 0, Eqgs. (25) and (26) produce

lim y = 2423 (29)
A0
limy = 4 (30)
A=0

The latter result is identical to that obtained in the general paper for a
linear flow profile unbounded by an upper wall. This situation effectively
occurs as / and 1 approach zero. The identity of the results confirms our
general equations in this limit.

APPROXIMATIONS AND DISCUSSION

The complexity of Egs. (25) and (26), and the need for numerical and
graphical calculations, make it appropriate to seek simplified, approximate
expressions for these coefficients. To begin with, it is useful to look at
limiting expressions in which more terms are retained than those shown in
Eqgs. (29) and (30). We focus here on the limit A — 0 because this limit is
of the greatest practical importance. The limit A —» oo, of lesser impor-
tance, is described adequately by Eq. (27).

For A « 1, Eq. (26) can be shown to reduce to

1 — 107 + 2842
— 3 - T
X“‘z‘”( 1— 22 >

where the subscript a is used to indicate that this is merely an approxima-
tion for any finite value of A. Expressed purely as a power series valid to
the third term,

31

Yo = 2423(1 — 8 + 1222) (32)

The first two terms, | — 84, can be approximated initially by e84, yielding
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the approximation
Yo = 24138 (33)

Figure 2 shows the error incurred by the above approximations and
others.

Similar approximations can be devised for . Using Eqgs. (4) and (31),
we get

41— 104 + 282%)

v, = a = 2i)? A1 (34)
where R has been replaced by its limiting form
R =61 - 24 A1 (35)

A series expansion of s yields
v, =401 -61) A« (36)

This is valid up to the A? term in that the coefficient of that term is zero.
One can also use various exponential approximations for ¥, similar to
those employed for y. The results are illustrated in Fig. 3. The simple
approximation designated by ¥ = 4(1 — 64), Eq. (36), is valid within 109/
to A = 0.1, equivalent to R = 0.48 (see Fig. 1). This is an excellent and
simple approximation, valid for most practical FFF work. Reasonable
consistency over a broader range of 1 values is provided by various ex-
ponential approximations, as shown in the figure.

It is necessary to emphasize here that the basic variable of FFF is
retention. Approached from the theoretical side, retention is described
most simply in terms of A, and approached experimentally, retention is
best described in terms of retention ratio R. The connection between
theoretical parameter 4 and experimental parameter R is provided by
Eq. (21) or Eq. (22). The connection between the plate height parameter y
and ¥ and retention parameter A has now been adequately covered, and we
turn our attention to variations with R,

Unfortunately, the complexity of the  and yx equations is such that,
combined with the modest complexity of Eq. (22), a closed expression for
the dependence of ¥ and y on R cannot be readily obtained. Yet the
variation of ¥ and y with R is the most important relationship for the
experimentalist studying peak broadening factors. In order to facilitate
such studies, we have plotted in Fig. 4 the dependence of y and ¥ on R.
These curves were obtained by combining the R vs A curve of Fig. 1 with
the ¥ and y expressions of Egs. (25) and (26).
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FIG. 4. Plots of y and y as a function of retention ratio R.

0.1 0.2 0.3 g.

Useful approximations can be developed to deal with these complicated
dependencies. The simplest stem from utilizing the lead term of Eq. (35),
R = 64, to convert a A dependency to an R dependency. When this is
combined with the two lead terms of Eq. (32), the following approximation

is obtained:
3

R
Xa =5 (1 — 4R/3) (37

When combined with Eq. (36), there results the approximation
Vo = 41 — R) (38)

These two approximations are shown in Fig. 5. Equation (38) works
moderately well over the entire retention range while Eq. (37) does not.
However, as noted before, the most significant region for practical FFF
is near R = 0, and both expressions serve a useful function in this vicinity.
When a greater retention range requires description, it is possible to
develop series approximations for y and . The following series utilizes
terms up to the seventh power in R:

4
fa = B Y a,R (39)
i=0
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FiG. 5. Approximations to x and y as provided by Egs. (37) and (38).
7 :
Yo=Y bR (40)
i=

These equations were fitted, except for restraints on the lead terms as
dictated by terms in Egs. (37) and (38), to the computer-derived values
utilizing a least squares procedure described by University of Utah
Computer Center Program Library No. 0032. The coefficients derived by
this procedure are a, = 1/9, a; = —0.03295, a, = —0.05328, a; =
—0.1090, a, = 0.09406; b, = 4.0, b, = —4.0, b, = 1.642, b; = 3.585,
b, = —18.479, by = 35.195, by = —24.484, and b, = 5.8212.

The errors produced by these approximations are shown in Fig. 6.
For the most part, these approximations ars valid to within 19.

The above approximations, combined with the theoretical equations,
provide a range of options which should make it convenient to predict
the behavior of FFF columns under the most diverse circumstances. In
this way, this work may serve a very practical purpose as well as filling
a major theoretical gap.
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